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A theoretical anslyslis was made of the effect of zerodynamic
hysteresis on stalling flutter. The assumptlon was made that the
absolute magnitude of the oscillatory sercdynamic forces and
moments are the same at stall as at zero angle of attack but that
the vector magnitudes of these forces and moments are changed, this
change being caused by the lag of aerodynaumlc damping and restoring
forces behind the velocities and displacements at stell, thus
giving rise to a hysteresls effect. The decrease of critical flutter
speed at stall was thus theoretlcally shown. The results were
applied to & given airfoll and correlation of the experimental and
theoretlical results was found possalble by assuming that the angle
of aerodynamic lag varlies as the slope of the statlce-1ift curve.
The seroiynamic lag was shown to cause the effective torsiocnal
damplng to decrease thereby explaining the low values of Gtorsional
aercdynamlic damping obtalned at stall.

INTRODUCTION

With the large increase in the use of axial-flow compressors
and turblnes, an investigation of the vlbrations of the blades of
these unlits has become of increasing importance. A signiflcant
part of such a study involves the type of vibration that 1s self-
maintained by the contlnual absorptlion of energy from the alr
stream, namely, the flutter of twblne and compressor blades.

The term flutter, as it is ordinarily used, refers to clas~
gical flutter, a self-sustalned oscillation d.ue to the coupling of
inertia forces, elastlc forces, damping forces, and dynamlic aero-
dynamic forceas. This type of flutter usually ocours on alrplane
wings at low angles of attack when the velocity reaches a certaln
value determined by the wing deslgn, and called the critical flutter
speed., The theory for thla type of flutter has been developed by
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many Investigators and the oscillatory aercdynamic forces and moments
derived (references 1 to 3). In all these derivations, the alrfoll
1s assumed to be at zero angle of attack. Close agreement has been
found between theory and experiment.

A radically different type of flutter called stalling flutter,
however, may occur on profiles at high angles of attack, such es
blades neaxr the stall point. This flutter occurs at much lower
critical flutter speeds than would be expected from classical-flutter
theory. Two reasons exist for belleving that thils type of flutter
would be more likely to occur in compressor and turblne blades than
classlcal flutter: First, compressor and turbine blades are so
stiff compared with ordinary ailrplane wings that critical speeds
obtained by classical calculations are usually above the reasonable
operating range, at least for subsonic airfolls. This conclusion,
however, cannot be stated wlth certainty because the effect of
cescading on the oscillatory aerodynamic forces is as yet unknown.
Second, the operation of compressors and turbines at high loads
near the stall point mekes the occurrence of stalling flutter more
l1kely. Stalling flutter has been shown to occur on compressor
cagcades In bench tests,

As yet, llttle ls known about the phenomenon of stalling
flutter. It has been observed most frequently in comnectlion with
stalled propellers (reference 4). Experimental work hes shown three
poasible causges (refqrences 5 to 7). The first cause is termed
"gtatic instabllity" (reference 5) and is assoclated with the fact
thet the slope of the 1lift curve decreases and hecomes negative
near the stall point. This change of slope can cause an instabllity,
which has been explaimed by Den Hartog (reference 8) as follows:

As the profile moves upwerd, the resultent motlion decreases the
effective angle of attack. If the slope of the lift curve 1s nega-
tive, the 1lift force wlll increase. As the proflle moves downward,
the effective angle of attack increases and the 1lift force decreases.
The vibratlons therefore continue to bulld up. This eXplanatlon in
terms of the static lift curve is, of course, not strictly correct
for conditions of flubter because the dynamic~lift curve willl be
different from the statlc-lift curve.

The second posslible cause for stalling flutter shown to exist
(reference 5) was excltation of the alrfoll by a system of Kfrmén
vortices shed in the wake., EKirm&n vortices produce an excitation
with frequency directly proportional to the alr velocity. At
certain discrete velocities, the KArmén vortex frequency will
coincide with one of the matural frequenclea of the profile. When
this coincldemnce of frequencies occurs, resonant vibrations of the
profile can be bullt up.
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The third and apparently most common cauvse was first inveatl-
gated by Studer (reference 6) who carried out the first important
experimental work on the subJect. Studer found that the critical
gpeed of his models dropped consldersbly near the stall point and
that the phase difference between the bending and torsional oscil-
lations decreased to zero so that the torsional and bending motions
wore in phase., He also found that torsional one-degree-of-freedom

flutter was possible, whereas it l1s known that one-degree-of-freedom

classical flutter camnot occur. Studsr explained the phencmenon
occurring at stall as follows: As the alrfoll approaches the stall
angle, separation of flow occurs. As the alrfoll oscillates about
the stall polnt, the separation of flow 1s delayed until the posi-
tion of maximmm ampllitude 1s reached. This position will be at an
angle of attack grester than that for the statiomary alrfoll. On
the return movement, reestablishment of smooth flow is delayed to
en angle of attack below that at which the atationary airfoll
would stall. At the stall angle, therefore, the alr forces acting
depend on the directlon of motion, ‘giving rise to a hysteresis

loop a% stall, as shown 1n flgure l. Studer came to the conclusion
that thls hysteresls effect, enabling energy to be abasorbed from
the air atream, is the cause of stalling flutter.

Studer's work was verified and amplified by Victory (refer-
ence 7) who used it as a basis for finding a link between stalling
fiutter and cleassical theory. The torsional serodynamic dampling
was experimentally shown to decrease as the angle of attack
increases and it may become negative at stall. It was then shown
that the critical flutter speed at stall could be calculated with
reagoneble accuracy by classical theory If the usually accepted
classical value of the torslional aerodynamlic damping is replaced
by an experimental value that varies wilth angle of attack, fre-
dquency parameter, Reynolds nmwmber, and position of the elastlc

axis,

A simllar hysteresis phenomenon was lnvestigated by Smilg in
connectlon with alleron flutter at transonic speeds. There the
flow separaiion is not duwe to stall but rather to compressibillty
offects 1n the transonic rdnge. The effects, however, are simllar,
The procedure used was to assume that because of the flow separa-
tion the damping and restorling serodynamic forces and momenis lag
the velocitles and displacements, respectively. Thls procedure
suggested a similar approech to the problem of stelling flutter,
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The mathematical theory of the aerodynamlic hysteresis effect
making use of the concept of an aerodynamic angle of lag developed
at the NACA Cleveland laboratory and the results obtalned on a
given alrfoll are presenied herein.

SYIMBOLS

The following symbols are used in this analysis:

a coordinate of elastic axls measured from midchord,
positive towards trailing edge in units of half
chord

a1, by, c1; functions of reduced frequency k and angle of

az, ba, €3 aerodynamic lag o

ay, ay, 8g, &g aerodynamic coefficients

b “half chord used as reference unit length

by, Fy, bg; bg aerodynamic coefficients

Cy gtiffness of alrfoll in bending per unlit span
length

Cr, 11ft coefflicient

Cg stiffness of alrfoll in torsion about a per unlt
span length .

© px

r functlion of reduced frequency k gliven in ref-
erence 1

¥y, Fp functions of reduced frequency k and angle of
serodynamic lag @

G function of reduced frequency k glven in ref-

erence 1

914
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a

o O W

moment of Inertia about elastlc axls per unit span
length

4 -1
rroportlonality constant

reduced frequency w—;?
osclllatory aerodynamic 1lift force per unit span

osclllatory aerodynamic moment about a per unlt
span

mass of airfoll per unit span

mass gf surrounding alr cylinder per unlt span,
npb

locatlon of center of gravity of airfoll measured
from & in vnits of half chord

radius of gyration referred to a in units of
half chord

- gtetic mass unbalance of airfoil, mrb

time

critical flutter apeed

vertical displacement

maximm bending amplitude

gtatic angle of attack

phase angle between bending and torsion
angle of torsional dlsplacement
maximm borsional amplitude
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13 ratio of mess of profile per unit span to mass of
surrounding alr cylinder per umlt span,
R S
B,  gpbl

P denalty of surrounding air

o angle of lag between displacements or veloclties
and aercdynamlc restoring forces or damping forces

w frequency of flutter vibration

Wy, fundamental bending frequency of alrfoll

Wy fundamental torsional frequency of airfoll

Dots above the symbols represent derivatives with reapect to time

ANALYSIS
Critical Flutter Speed and Fregquency

The osclllatory aerodynamic lift and moment are given by equa-
tlong XVIII and XX of reference 1. If the exponsnilal relations

i -
¥y= yoeiwt end 6 = 8pe (wt-p) and the relation k = %}?- are asub-

stituted in these equations in order to ellminate lmaginary terms,
the equatlons can be written as followa:

L = ["' & 13 )08 - w6 - 0P L ]
= h |ayy wayy+<a9 kaF) b6 - aghf - W m be

-~ -\ s . ® (1)
M =mD byir'-mb,,y+(‘ue-]l:by be-wiebe-wz—ixbe]

where

= - 26
ay = (1+k)

- =
k

o
I
1

914
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The second derivative
ment terms in equations (15
and stiffness terms, respectively.

To--5(a+d)ecg(}- o) . e)
l:k2<a+z G+E(4 & k 3 -
the first derivative, and the displace-

represent inertia terms, damping terms,
The bending and the torsional

displacement are, as has been already indicated, glven by

Equations (1) then became

L = = mg w® [ayyoem + IZ. yoe

el

- oget (0t-8)

(ae - -g) beoei(wb'a)

+ 1A gbeget (W8 ikI beoei(“’b‘ﬁ)]

- b
M=-m b [’byyoeimb + 1byyoeiwt + \bg - .g:) 'beoei(mt's)

- b.
+ i‘B’ebeoei(mt B) + ?:I bgoei(%-ﬁ)]

'\

> (2)
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These equations represent the vector sum of the aerodynsmic
inexrtia, damping, and stiffness forces and moments.

The separation and reestablishment of flow as the airfoll
oscillates ebout the stall point has been shown (reference §) to
lag behind the actual airfoll displacement. The oscillatory aero-
dynamic forces snd momenbts can be resolved as shown into inertisa
components 1n phase wlth the accelerations, damping components in
phage with the velocities, and stiffness components in phase with
the displacements. If the flow seperation and reesteblishment lags
the motiona, these aerodynamic force and moment components lag the
velocities and the displacements. The essential assumption 1s now
made that at stall the absolute values of the oscilllating aero-
dynamic forces and moments are the same as at zero angle of attack
but because of the hysteresis effect the vector megnltudes of the
aerodynamic restoring forces and moments and the aerodynamic
damping forces and moments have so changed that the restoring forces
and moments lag the dlsplacements and the damping forces and
moments leg the velocitles by an angle .

Equetions (2) are then modified ag followsa:

1(wt-g <ae _

a
L =-m w? {ayyoeiwt + i;yyoe -g) bgoei(wt'ﬂ) T

+ 1agbogel (Wt=p-@) 2 - poget (W8~ q”]
> (3)

M= - my w?b {byyoei@ + i'b.,’,;roe:"(“""l""qa + \bg - -i:x) 'beoei (wt-p)

+ ﬁebeoei("ﬁ"-ﬁ““?) v 2 b6, ei(tsm---;a-m)]
k

-’

The equations of dynamic equilibrium of the system are (ref-
erence 1l):

m'y’+be+Sg-L=0
(1] oo (4)
Sy +16 +Ct0 - M=0
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or

~maP yoeiw'" + G-byoeiwb - SWP Goei(&m's) -L=0

~Suf yoei(‘*' - ToP Soei(“’b"ﬁ) + Cteoei(wt'ﬁ) -M=0

(42)

By combining equations (4a) and (3) and dividing the first
eguation by mawz and the second eguation by mawz'b in order %o

meke the coefficients dimensionless, the following equatlons
obtalned: N

. )
m b 1wk — _i(ws-P)
B = =— + e + ia ¥
[( y g maa2> y® } 0
— E <
+ [ae-ikx - _.S.F)ei(“’t'ﬁ) + (f + 139> ei("’t‘ﬁ@)] b6y = O

S_ ). iwt = _1(wt-o)

b c
. ¥ T t 1 (b
+Kbe"1§"mb2+m(,,z-n2>°( 2

.
+<‘§ + 156) ei(""i-ﬁ-q’)] 6, = 0 )
Let
_I_I!_ = p,
mg
Then
- 2
Cp = may,
c 2

are

} (s)
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I = mrg%p?; —'I'Tg'="-rgz"°
g b
S = mrb
S
mep M7 C
Ct=1wt2
——?L:Lw2%2=cuit_2
e & R g

By substituting into equation (5) and factoring as shown

lay + u(Z—%z- - l) + i'a'.'ye'iq):\ pRicy Yo + [(ae - -E-kz - ) W

+<-a—;:x + ia'e)e'i;lei(wt'ﬁ) b6y = O

(8

3 2
- b w
[(by - e) + 1b2_f e_ j‘cﬂeiwt Yo + [be - 'LI +c <_(§? - 1)

+<%{I + 1‘69) e‘iq’] ol (wt-B) b6y = O

/

Equations (6) have solutions other than 6 =y = 0 if and
only if the determinant of the coefficlents of y and 6 vanishes.

wp2 = -1® By w2 )
ay+u<;2—-l)+iaye ba-k+c<—(-n? l)

+<%‘Z + 1"'59) e'i‘:p] - [(by - e) + i":—xy e'im] } (7)

J
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By multiplying through by ei? and substltuting the Euler

ralatda
Al e

8

el? - cos @+ 1 gino
and by seperating real and imaginary parts and rearranging
W\ W5\ _
al (E) +bl(F) + Ol =0
(8)

PP n
'I'Uz’U

el§

o (SY L 4 (05\
2 %/ " 2\%)

where
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2
a1 = M c(%) (2 cos? @ - 1)

(L)-b 2
a2=p.c —— Binz ¢
Wy

by = [c(ay'u) + u(bew E{I <:_’t_>>2J(2 cos? P - 1)
+ u.(wb _Z cos ¥ -[

= )2 +c_:,]smcp

vo <[ etoge o (50322 Jn s o
+ u(%)z % atn® +[ (%‘;) By 40 z;y}m ®
=[(a,-u) vo-22-0) - (s-E-0) (by;e)jl(z cos2® - 1) $(9)

+['Ee (by ~e) + "B'y- (ag ~€) - By (a&-u.) - Ey (be-c)] sin @

ﬁ\‘p

+ 1‘[5} (ay- 1) - ay (b -e)]eos P+ by ag - ay By

[ 8y -n) | bg- _l- > (ae--—-e) (v -e)]sinZCP
-[

3 ‘::y -e) + by (ag -e) - By (ay ) - e.y (bg - c)]cos P

+ 1By (y-w) - 3y (y-o)]atn @

914
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2
By solving equation (8) for “s and eguating

)]

N\ W

5} B

Zal Zaz

or

F, (k, @) = F, (k, %) (11)

2

" For & given profile, the functic

only of the reduced fregquenocy k and the a.ng e of a rod.ynamic

lag ®. For a given angle of aerodynamlc lag ¥, egquation (11)

can be solved for reduced frequency k by finding the intersections
of the functions F; and Fz plotted against k. The flutter
frequency & can then be obtained from equation (10) and the
critical flutter speed v from the relation

ot nA T avme
WllED m“ Chde &7

wb
= 9P 12
V== (12)

The critical flutter speeds v and the frequencles k can then be
plotted as functlons of the angle of aercdynamlic lag @.

Aerodynamlc Demping
The torsional sercdynsmic damping coefficient Dy 1s given by

39=i[%'-a-2(%‘-&%3‘-%(%‘4-&)(%] (13)

and is a function of Xk only. After the reduced frequency Xk 1is
obtained as a function of the angle of aerodynamic lag ® by equa-
tion (11), the torsional aerodynsmic damping bg can be calculated

es &8 Punction of the angle of aerodynamlic leg @,

RESULTS AND DISCUSSION

The critical flubtter speed v was calculated as a function of
the angle of aerodynamic lag @ by means of equations (11) and (12)
for wing II of reference 7. The constants for thls wing are:
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8 = - 0.29

o
n

3.375 inches
r = 0,228

16l.2

-
8

Wy = 87.2 redians per second
wy, = 80.3 radians per second

The radius of gyration rg, which was not given, was assumed to
equal 0.5. The results are shown in figure 2. As ‘the angle of
aerodynemic lag @ increases, the critical flutter speed v _
decreases, If the toreional aerodynamic demping coefficient: bg
is now calculated by means of eguation (13), the curve shown in
figure 3 1s obtalned. The torsional aerodynamic damping coeffi-
clent Dy deoreases with increasing angle of lag ®, From fige
ures 2 and 3 the critical flutter speed v can be obtained as =
function of the torsional damping coefficlent bg. This relation
is plotted in figure 4 and shows the critical flutter speed v
decreesing as the torsional damping bg decreases. The shape of
this curve is very similar to those obtalined in reference 7 for
ratios of torsiomal to bending frequency wy/w, close to 1.

The results obtalned thus far indlcate that the aerocdynamic-
lag effect can account for a drop in critical flutter speed v
in the reglon of stall and elso for a decrease in torsional aero-
dynamic damping. In order to obtain quantitative agreement with the
experimentally observed critical flutter speeds in the reglon of
stall, however, 1t ls necempery to find & relation between the
angle of aerodynamic lag ® and the angle of attack a. Figure 7
of reference S5 shows the variation of critical flutter speed +
with angle of attack o for this ailxfoll. By croes-plotting this
curve wlth figure 2, the angle of aerodynamlic lag 9P can be
obtalned as & function of angle of attack <. Thls relation 1s
shown plotted as & g0lid line in figure &.

The gquestion now presents itself of whether some physical
basgis can be found for the curve shown in figure 5. A relation
between angle of attack o and the angle of aerodynamic lag @
suggests itself when the 1lift curve of the alrfoll is consldered.
Ap the angle of attack o Iincreases, the seperstlion of flow
increases and the slope of the 1lif't curve decreases. Also, &as

914



NACA RM No. ESBO4 1=

the separatlon of flow increesses, the angle of aerocdynamlc lag o
might be expected to Increase. It would therefore seem possible
that the angle of aerodynamic lag @ 1s related to the change of
slope of the 1lift curve, The 1lft curve for the alrfoll used is
glven In reference 5. The assunption was now made that the angle
of asrodynamlc lag ® is given by

ac ac
= L -5
CP_K[ d.cc) d.o:.]

ﬂ.'—'mo

The slope of the 1lift curve at zero angle of attack is approxi-
mately 2n end the comstant K was calculated by taking one
arbitrary point from the solid curve of figure 5. The value of K
is equal to 45/x if the angle of aerodynamic lag P i1s in
degrees. Therefore,

ﬂ'._,)
CP=%§<2:1:-%) ; =L(1'T(rlf.’.)7GL

This equatlion wes plotted as the dashed curve of figure 5 and
is seen to agree very well with the solid curve, which is based on
experimental data.

By combining the dashed curve of figwre 5 with the relation
shown in figure 2, the critloal flutter speed v can now be plotted
asg a functlon of angle of sttack «. This function is shown as the
dashed curve of figure 6, which agrees very well with the expexri-
mental ourve cbtained from figure 7 of reference S. (The slope of
the lift curve shown in reference 5 by means of which the dashed
curve of fig. 5 was obtained 1s plotted in fig. 7 of this report.)

The torsional aerodynamic damping 39 can now &lso be plotted
as a function of the angle of attack « (fig. 8). The torsiomal
aerodynamic dsmping bg drops sherply in the reglon of stall, the
shape of the curve being similar to the shape of the critical
flutter-speed curve shown ln figure €.

- SUMMARY QF RESULTS

From the calculations of critical flutter speeds made for &
given airfoil, it was shown that the phencmenon of stalling flutter
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can at least in some cases be explained on the baslis of an aerodynamic
lag or hysteresla effect. The general characteristice of stalling
flutter, namely, decreases in critical flutier speed and In effective
aerodynemic torsional dsmping coefficient with increasing angle cof
attack, were shown to be related to the more fundamental concept of
lagging aerodynamic forces and moments., Correlation between experl-
mental and theoretical results was obtained by assumlng that the
aerodynamic angle of lag varies wlth the angle of attack in s manner
that can be explained by the verlation in the slope of the static-
1ift curve. More experimental and theoretical work is necessary to
more closely correlate the aerodynamic lag with the angle of attack.

Flight Propulsion Research Laboratory,
Natlonal Advisory Commlttee for Aeronautics,
Cleveland, Ohio.
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